Ridge regression

Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated.[1] It has been used in many fields including econometrics, chemistry, and engineering.[2] Also known as Tikhonov regularization, named for Andrey Tikhonov, it is a method of regularization of ill-posed problems.[a] It is particularly useful to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters.[3] In general, the method provides improved efficiency in parameter estimation problems in exchange for a tolerable amount of bias (see bias–variance tradeoff).[4]

The theory was first introduced by Hoerl and Kennard in 1970 in their Technometrics papers "Ridge regressions: biased estimation of nonorthogonal problems" and "Ridge regressions: applications in nonorthogonal problems".[5][6][1]

Ridge regression was developed as a possible solution to the imprecision of least square estimators when linear regression models have some multicollinear (highly correlated) independent variables—by creating a ridge regression estimator (RR). This provides a more precise ridge parameters estimate, as its variance and mean square estimator are often smaller than the least square estimators previously derived.[7][2]

  1. ^ a b Hilt, Donald E.; Seegrist, Donald W. (1977). Ridge, a computer program for calculating ridge regression estimates. doi:10.5962/bhl.title.68934.[page needed]
  2. ^ a b Gruber, Marvin (1998). Improving Efficiency by Shrinkage: The James--Stein and Ridge Regression Estimators. CRC Press. p. 2. ISBN 978-0-8247-0156-7.
  3. ^ Kennedy, Peter (2003). A Guide to Econometrics (Fifth ed.). Cambridge: The MIT Press. pp. 205–206. ISBN 0-262-61183-X.
  4. ^ Gruber, Marvin (1998). Improving Efficiency by Shrinkage: The James–Stein and Ridge Regression Estimators. Boca Raton: CRC Press. pp. 7–15. ISBN 0-8247-0156-9.
  5. ^ Hoerl, Arthur E.; Kennard, Robert W. (1970). "Ridge Regression: Biased Estimation for Nonorthogonal Problems". Technometrics. 12 (1): 55–67. doi:10.2307/1267351. JSTOR 1267351.
  6. ^ Hoerl, Arthur E.; Kennard, Robert W. (1970). "Ridge Regression: Applications to Nonorthogonal Problems". Technometrics. 12 (1): 69–82. doi:10.2307/1267352. JSTOR 1267352.
  7. ^ Jolliffe, I. T. (2006). Principal Component Analysis. Springer Science & Business Media. p. 178. ISBN 978-0-387-22440-4.


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne