Part of a series on |
Regression analysis |
---|
Models |
Estimation |
Background |
Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated.[1] It has been used in many fields including econometrics, chemistry, and engineering.[2] Also known as Tikhonov regularization, named for Andrey Tikhonov, it is a method of regularization of ill-posed problems.[a] It is particularly useful to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters.[3] In general, the method provides improved efficiency in parameter estimation problems in exchange for a tolerable amount of bias (see bias–variance tradeoff).[4]
The theory was first introduced by Hoerl and Kennard in 1970 in their Technometrics papers "Ridge regressions: biased estimation of nonorthogonal problems" and "Ridge regressions: applications in nonorthogonal problems".[5][6][1]
Ridge regression was developed as a possible solution to the imprecision of least square estimators when linear regression models have some multicollinear (highly correlated) independent variables—by creating a ridge regression estimator (RR). This provides a more precise ridge parameters estimate, as its variance and mean square estimator are often smaller than the least square estimators previously derived.[7][2]
Cite error: There are <ref group=lower-alpha>
tags or {{efn}}
templates on this page, but the references will not show without a {{reflist|group=lower-alpha}}
template or {{notelist}}
template (see the help page).