Rolle's theorem

If a real-valued function f is continuous on a closed interval [a, b], differentiable on the open interval (a, b), and f (a) = f (b), then there exists a c in the open interval (a, b) such that f ′(c) = 0.

In calculus, Rolle's theorem or Rolle's lemma essentially states that any real-valued differentiable function that attains equal values at two distinct points must have at least one point, somewhere between them, at which the slope of the tangent line is zero. Such a point is known as a stationary point. It is a point at which the first derivative of the function is zero. The theorem is named after Michel Rolle.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne