Scientific consensus

Scientific consensus is the generally held judgment, position, and opinion of the majority or the supermajority of scientists in a particular field of study at any particular time.[1][2]

Consensus is achieved through scholarly communication at conferences, the publication process, replication of reproducible results by others, scholarly debate,[3][4][5][6] and peer review. A conference meant to create a consensus is termed as a consensus conference.[7][8][9] Such measures lead to a situation in which those within the discipline can often recognize such a consensus where it exists; however, communicating to outsiders that consensus has been reached can be difficult, because the "normal" debates through which science progresses may appear to outsiders as contestation.[10] On occasion, scientific institutes issue position statements intended to communicate a summary of the science from the "inside" to the "outside" of the scientific community, or consensus review articles[11] or surveys[12] may be published. In cases where there is little controversy regarding the subject under study, establishing the consensus can be quite straightforward.

Popular or political debate on subjects that are controversial within the public sphere but not necessarily controversial within the scientific community may invoke scientific consensus: note such topics as evolution,[13][14] climate change,[15] the safety of genetically modified organisms,[16] or the lack of a link between MMR vaccinations and autism.[10]

  1. ^ Ordway, Denise-Marie (2021-11-23). "Covering scientific consensus: What to avoid and how to get it right". The Journalist's Resource. Retrieved 2022-09-11.
  2. ^ "Scientific Consensus". Green Facts. Retrieved October 24, 2016.
  3. ^ Laudan, Larry (1984). Science and Values: The Aims of Science and Their Role in Scientific Debate. London, England, UK: University of California Press. ISBN 0-520-05267-6.
  4. ^ Ford, Michael (2008). "Disciplinary authority and accountability in scientific practice and learning" (PDF). Science Education. 92 (3): 409. Bibcode:2008SciEd..92..404F. doi:10.1002/sce.20263. Construction of scientific knowledge is first of all public, a collaborative effort among a community of peers working in a particular area. 'Collaborative' may seem a misnomer because individual scientists compete with each other in their debates about new knowledge claims. Yet this sense of collaboration is important: it checks individual scientists from being given authority for new knowledge claims prematurely.
  5. ^ Webster, Gregory D. (2009). "The person-situation interaction is increasingly outpacing the person-situation debate in the scientific literature: A 30-year analysis of publication trends, 1978-2007". Journal of Research in Personality. 43 (2): 278–279. doi:10.1016/j.jrp.2008.12.030.
  6. ^ Horstmann, K. T., & Ziegler, M. (2016). Situational Perception: Its Theoretical Foundation, Assessment, and Links to Personality. In U. Kumar (Ed.), The Wiley Handbook of Personality Assessment (1st ed., pp. 31–43). Oxford: Wiley Blackwell. ("In Personality Assessment, Walter Mischel focused on the instability of personality and claimed that it is nearly impossible to predict behavior with personality (Mischel, 1968, 2009). This led to the person-situation debate, a controversy in psychology that sought to answer the question whether behavior depended more on the subject's personality or the situation (or both) and has received considerable research attention (Webster, 2009).")
  7. ^ Przepiorka, D.; Weisdorf, D.; Martin, P.; Klingemann, H. G.; Beatty, P.; Hows, J.; Thomas, E. D. (June 1995). "1994 Consensus Conference on Acute GVHD Grading". Bone Marrow Transplantation. 15 (6): 825–828. ISSN 0268-3369. PMID 7581076.
  8. ^ Jennette, J. C.; Falk, R. J.; Bacon, P. A.; Basu, N.; Cid, M. C.; Ferrario, F.; Flores-Suarez, L. F.; Gross, W. L.; Guillevin, L.; Hagen, E. C.; Hoffman, G. S.; Jayne, D. R.; Kallenberg, C. G.; Lamprecht, P.; Langford, C. A.; Luqmani, R. A.; Mahr, A. D.; Matteson, E. L.; Merkel, P. A.; Ozen, S.; Pusey, C. D.; Rasmussen, N.; Rees, A. J.; Scott, D. G.; Specks, U.; Stone, J. H.; Takahashi, K.; Watts, R. A. (2013). "2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides". Arthritis and Rheumatism. 65 (1): 1–11. doi:10.1002/art.37715. ISSN 0004-3591. PMID 23045170.
  9. ^ Antzelevitch, Charles; Brugada, Pedro; Borggrefe, Martin; Brugada, Josep; Brugada, Ramon; Corrado, Domenico; Gussak, Ihor; LeMarec, Herve; Nademanee, Koonlawee; Perez Riera, Andres Ricardo; Shimizu, Wataru; Schulze-Bahr, Eric; Tan, Hanno; Wilde, Arthur (8 February 2005). "Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association". Circulation. 111 (5): 659–670. doi:10.1161/01.CIR.0000152479.54298.51. ISSN 1524-4539. PMID 15655131.
  10. ^ a b Shwed Uri; Peter Bearman (December 2010). "The Temporal Structure of Scientific Consensus Formation". American Sociological Review. 75 (6): 817–40. doi:10.1177/0003122410388488. PMC 3163460. PMID 21886269.
  11. ^ Anderegg, William R. L.; Prall, James W.; Harold, Jacob; Schneider, Stephen H. (2010-06-07). "Expert credibility in climate change". Proceedings of the National Academy of Sciences. 107 (27): 12107–12109. Bibcode:2010PNAS..10712107A. doi:10.1073/pnas.1003187107. ISSN 0027-8424. PMC 2901439. PMID 20566872.
  12. ^ Cook, John; Oreskes, Naomi; Doran, Peter T.; Anderegg, William R. L.; Verheggen, Bart; Maibach, Ed W.; Carlton, J. Stuart; Lewandowsky, Stephan; Skuce, Andrew G.; Green, Sarah A.; Nuccitelli, Dana (April 2016). "Consensus on consensus: a synthesis of consensus estimates on human-caused global warming". Environmental Research Letters. 11 (4): 048002. Bibcode:2016ERL....11d8002C. doi:10.1088/1748-9326/11/4/048002. hdl:1983/34949783-dac1-4ce7-ad95-5dc0798930a6. ISSN 1748-9326. S2CID 470384.
  13. ^ "Statement on the Teaching of Evolution" (PDF). American Association for the Advancement of Science. 2006-02-16. Retrieved 2008-05-02.
  14. ^ "NSTA Position Statement: The Teaching of Evolution". National Science Teacher Association. Retrieved 2008-05-02.
  15. ^ "Joint Science Academies' Statement" nationalacademies.org
  16. ^ Nicolia, Allesandro; Manzo, Alberto; Veronesi, Fabio; Rosellini, Daniele (2013). "An overview of the last 10 years of genetically engineered crop safety research". Critical Reviews in Biotechnology. 34 (1): 77–88. doi:10.3109/07388551.2013.823595. PMID 24041244. S2CID 9836802.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne