Self-assembled monolayer

Self-assembled monolayers (SAM) are assemblies of organic molecules that form spontaneously on surfaces by adsorption and organize themselves into more or less distinct domains (head group, chain/backbone, and tail/end group).[1][2] In some cases, molecules that form the monolayer do not interact strongly with the substrate. This is the case for porphyrins on HOPG[3] and two-dimensional supramolecular networks[4] of PTCDA on gold[5]. In other cases, the head group has a strong affinity for the substrate and anchors the molecule.[6] Such an SAM consisting of a head group, chain (labeled "tail"), and functional end group is depicted in Figure 1. Common head groups include thiols, silanes, and phosphonates.

Figure 1. Representation of a SAM structure

SAMs are created by the chemisorption of head groups onto a substrate from either the vapor or liquid phase[7][8] followed by a slower organization of "tail groups".[9] Initially, at small molecular density on the surface, adsorbate molecules form either a disordered mass of molecules or an ordered two-dimensional "lying down phase".[7] At higher molecular coverage, adsorbates can begin to form three-dimensional crystalline or semicrystalline structures on the substrate surface over a period of minutes to hours.[10] The head groups assemble on the substrate, while the tail groups assemble far from the substrate. Areas of close-packed molecules nucleate and grow until the surface of the substrate is covered in a single monolayer.

Adsorbate molecules adsorb readily because they lower the surface free-energy of the substrate[1] and are stable due to the strong chemisorption of the head groups. These bonds create monolayers that are more stable than the physisorbed bonds of Langmuir–Blodgett films.[11][12] For example, the trichlorosilane head group of an FDTS molecule reacts with a hydroxyl group on a substrate to form a very stable covalent bond [R-Si-O-substrate] with an energy of 452 kJ/mol.[citation needed] Thiol-metal bonds are on the order of 100 kJ/mol, making them fairly stable in a variety of temperatures, solvents, and potentials.[10] Monolayers pack tightly due to van der Waals interactions,[1][12] thereby reducing their own free energy.[1] The adsorption can be described by the Langmuir adsorption isotherm if lateral interactions are neglected. If they cannot be neglected, the adsorption is better described by the Frumkin isotherm.[10]

  1. ^ a b c d Love; et al. (2005). "Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology". Chem. Rev. 105 (4): 1103–1170. doi:10.1021/cr0300789. PMID 15826011.
  2. ^ Barlow, S.M.; Raval R.. (2003). "Complex organic molecules at metal surfaces: bonding, organisation and chirality". Surface Science Reports. 50 (6–8): 201–341. Bibcode:2003SurSR..50..201B. doi:10.1016/S0167-5729(03)00015-3.
  3. ^ De Feyter, S.; De Schreyer F.C. (2003). "Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy". Chemical Society Reviews. 32 (3): 139–150. CiteSeerX 10.1.1.467.5727. doi:10.1039/b206566p. PMID 12792937.
  4. ^ Elemans, J.A.A.W.; Lei S., De Feyter S. (2009). "Molecular and Supramolecular Networks on Surfaces: From Two-Dimensional Crystal Engineering to Reactivity". Angew. Chem. Int. Ed. 48 (40): 7298–7332. doi:10.1002/anie.200806339. hdl:2066/75325. PMID 19746490.
  5. ^ Witte, G.; Wöll Ch. (2004). "Growth of aromatic molecules on solid substrates for applications in organic electronics". Journal of Materials Research. 19 (7): 1889–1916. Bibcode:2004JMatR..19.1889W. doi:10.1557/JMR.2004.0251.
  6. ^ Carroll, Gregory T.; Pollard, Michael M.; van Delden, Richard A.; Feringa, Ben L. (2010). "Controlled rotary motion of light-driven molecular motors assembled on a gold film" (PDF). Chem. Sci. 1 (1): 97–101. doi:10.1039/C0SC00162G. S2CID 97346507.
  7. ^ a b Schwartz, D.K., Mechanisms and Kinetics of Self-Assembled Monolayer Formation (2001). "Mechanisms and kinetics of self-assembled monolayer formation". Annu. Rev. Phys. Chem. 52: 107–37. Bibcode:2001ARPC...52..107S. doi:10.1146/annurev.physchem.52.1.107. PMID 11326061.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Schreiber, F (30 November 2000). "Structure and growth of self-assembling monolayers". Progress in Surface Science. 65 (5–8): 151–257. Bibcode:2000PrSS...65..151S. doi:10.1016/S0079-6816(00)00024-1.
  9. ^ Wnek, Gary, Gary L. Bowlin (2004). Encyclopedia of Biomaterials and Biomedical Engineering. Informa Healthcare. pp. 1331–1333.{{cite book}}: CS1 maint: multiple names: authors list (link)
  10. ^ a b c Vos, Johannes G., Robert J. Forster, Tia E. Keyes (2003). Interfacial Supramolecular Assemblies. Wiley. pp. 88–94.{{cite book}}: CS1 maint: multiple names: authors list (link)
  11. ^ Madou, Marc (2002). Fundamentals of Microfabrication: The Science of Miniaturization. CRC. pp. 62–63.
  12. ^ a b Kaifer, Angel (2001). Supramolecular Electrochemistry. Coral Gables. Wiley VCH. pp. 191–193.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne