Separation of concerns

Diagram illustrating the principle of separation of concerns, which says that an action entity can only contain a single type of tasks

In computer science, separation of concerns (sometimes abbreviated as SoC) is a design principle for separating a computer program into distinct sections. Each section addresses a separate concern, a set of information that affects the code of a computer program. A concern can be as general as "the details of the hardware for an application", or as specific as "the name of which class to instantiate". A program that embodies SoC well is called a modular[1] program. Modularity, and hence separation of concerns, is achieved by encapsulating information inside a section of code that has a well-defined interface. Encapsulation is a means of information hiding.[2] Layered designs in information systems are another embodiment of separation of concerns (e.g., presentation layer, business logic layer, data access layer, persistence layer).[3]

Separation of concerns results in more degrees of freedom for some aspect of the program's design, deployment, or usage. Common among these is increased freedom for simplification and maintenance of code. When concerns are well-separated, there are more opportunities for module upgrade, reuse, and independent development. Hiding the implementation details of modules behind an interface enables improving or modifying a single concern's section of code without having to know the details of other sections and without having to make corresponding changes to those other sections. Modules can also expose different versions of an interface, which increases the freedom to upgrade a complex system in piecemeal fashion without interim loss of functionality.[citation needed]

Separation of concerns is a form of abstraction. As with most abstractions, separating concerns means adding additional code interfaces, generally creating more code to be executed. The extra code can result in higher computation costs in some cases, but in other cases also can lead to reuse of more optimized code. So despite the many benefits of well-separated concerns, there may be an associated execution penalty.[citation needed]

  1. ^ Laplante, Phillip (2007). What Every Engineer Should Know About Software Engineering. CRC Press. ISBN 978-0-8493-7228-5.
  2. ^ Mitchell, R. J. (1990). Managing Complexity in Software Engineering. IEE. p. 5. ISBN 0-86341-171-1.
  3. ^ Microsoft Application Architecture Guide. Microsoft Press. 2009. ISBN 978-0-7356-2710-9.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne