Small-angle X-ray scattering

Small-angle X-ray scattering (SAXS) is a small-angle scattering technique by which nanoscale density differences in a sample can be quantified. This means that it can determine nanoparticle size distributions, resolve the size and shape of (monodisperse) macromolecules, determine pore sizes and characteristic distances of partially ordered materials.[1] This is achieved by analyzing the elastic scattering behaviour of X-rays when travelling through the material, recording their scattering at small angles (typically 0.1 – 10°, hence the "Small-angle" in its name). It belongs to the family of small-angle scattering (SAS) techniques along with small-angle neutron scattering, and is typically done using hard X-rays with a wavelength of 0.07 – 0.2 nm. Depending on the angular range in which a clear scattering signal can be recorded, SAXS is capable of delivering structural information of dimensions between 1 and 100 nm, and of repeat distances in partially ordered systems of up to 150 nm.[2] USAXS (ultra-small angle X-ray scattering) can resolve even larger dimensions,[3][4][5] as the smaller the recorded angle, the larger the object dimensions that are probed.

SAXS and USAXS belong to a family of X-ray scattering techniques that are used in the characterization of materials. In the case of biological macromolecules such as proteins, the advantage of SAXS over crystallography is that a crystalline sample is not needed. Furthermore, the properties of SAXS allow investigation of conformational diversity in these molecules.[6] Nuclear magnetic resonance spectroscopy methods encounter problems with macromolecules of higher molecular mass (> 30–40 kDa). However, owing to the random orientation of dissolved or partially ordered molecules, the spatial averaging leads to a loss of information in SAXS compared to crystallography.

  1. ^ Hamley, I.W. "Small-Angle Scattering: Theory, Instrumentation, Data, and Applications" – Wiley, 2022. ISBN 978-1-119-76830-2.
  2. ^ Glatter O; Kratky O, eds. (1982). Small Angle X-ray Scattering. Academic Press. ISBN 0-12-286280-5. Archived from the original on April 21, 2008.
  3. ^ Sztucki, M; Narayanan, T (2007). "Development of an ultra-small-angle X-ray scattering instrument for probing the microstructure and the dynamics of soft matter". Journal of Applied Crystallography. 40: s459 – s462. doi:10.1107/S0021889806045833. ISSN 1600-5767.
  4. ^ Narayanan, T; Sztucki, M; Van Vaerenbergh, P; Léonardon, J; Gorini, J; Claustre, L; Sever, F; Morse, J; Boesecke, P (2018). "A multipurpose instrument for time-resolved ultra-small-angle and coherent X-ray scattering". Journal of Applied Crystallography. 51 (6): 1511–1524. doi:10.1107/S1600576718012748. ISSN 1600-5767. PMC 6276275. PMID 30546286.
  5. ^ Patil, N; Narayanan, T; Michels, L; Skjønsfjell, ETB; Guizar-Sicairos, M; Van den Brande, N; Claessens, R; Van Mele, B; Breiby, DW (May 2019). "Probing Organic Thin Films by Coherent X-ray Imaging and X-ray Scattering". ACS Applied Polymer Materials. 1 (7): 1787–1797. doi:10.1021/acsapm.9b00324. ISSN 2637-6105. S2CID 189992231.
  6. ^ Burger, Virginia M., Daniel J. Arenas, and Collin M. Stultz. "A structure-free method for quantifying conformational flexibility in proteins." Scientific reports 6 (2016): 29040. DOI: 10.1038/srep29040 (2016).| http://hdl.handle.net/1721.1/108809

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne