Small molecule

In molecular biology and pharmacology, a small molecule or micromolecule is a low molecular weight (≤ 1000 daltons[1]) organic compound that may regulate a biological process, with a size on the order of 1 nm[citation needed]. Many drugs are small molecules; the terms are equivalent in the literature. Larger structures such as nucleic acids and proteins, and many polysaccharides are not small molecules, although their constituent monomers (ribo- or deoxyribonucleotides, amino acids, and monosaccharides, respectively) are often considered small molecules. Small molecules may be used as research tools to probe biological function as well as leads in the development of new therapeutic agents. Some can inhibit a specific function of a protein or disrupt protein–protein interactions.[2]

Pharmacology usually restricts the term "small molecule" to molecules that bind specific biological macromolecules and act as an effector, altering the activity or function of the target. Small molecules can have a variety of biological functions or applications, serving as cell signaling molecules, drugs in medicine, pesticides in farming, and in many other roles. These compounds can be natural (such as secondary metabolites) or artificial (such as antiviral drugs); they may have a beneficial effect against a disease (such as drugs) or may be detrimental (such as teratogens and carcinogens).

  1. ^ Macielag MJ (2012). "Chemical properties of antibacterials and their uniqueness". In Dougherty TJ, Pucci MJ (eds.). Antibiotic Discovery and Development. Springer. pp. 801–2. ISBN 978-1-4614-1400-1. The majority of [oral] drugs from the general reference set have molecular weights below 550. In contrast the molecular-weight distribution of oral antibacterial agents is bimodal: 340–450 Da but with another group in the 700–900 molecular weight range.
  2. ^ Arkin MR, Wells JA (April 2004). "Small-molecule inhibitors of protein-protein interactions: progressing towards the dream". Nature Reviews Drug Discovery. 3 (4): 301–17. doi:10.1038/nrd1343. PMID 15060526. S2CID 13879559.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne