Soyuz MS

Soyuz MS
Союз МС
Soyuz MS-20 approaching the ISS
ManufacturerEnergia
Country of originRussia
OperatorRoscosmos
Specifications
Spacecraft typeHuman spaceflight
Launch mass7,290 kg (16,070 lb)
Payload capacity
  • Launch: Crew + 170 kg (370 lb)
  • Landing: Crew + 60 kg (130 lb)
  • Disposal: 170 kg (370 lb)
Crew capacity3
Volume
  • Total: 10 m3 (350 cu ft)
  • Descent module: 4 m3 (140 cu ft)
  • Orbital module: 6 m3 (210 cu ft)
Batteries755 Ah
RegimeLow Earth orbit
Design life200 days when docked to the International Space Station (ISS)
Dimensions
Solar array span10.7 m (35 ft)
Width2.72 m (8 ft 11 in)
Production
StatusActive
On order3
Built26
Launched26 (as of 11 September 2024)
Operational1 (MS-26)
Retired24
Failed1 (MS-10)
Maiden launch7 July 2016 (MS-01)
Last launchActive
Related spacecraft
Derived fromSoyuz TMA-M
Flown withSoyuz FG (2016–2019)
Soyuz 2.1a (2020–)
← Soyuz TMA-M Orel

The Soyuz MS (Russian: Союз МС; GRAU: 11F732A48) is the latest version of the Russian Soyuz spacecraft series, first launched in 2016. The "MS" stands for "modernized systems," reflecting upgrades primarily focused on the communications and navigation subsystems. An evolution of the Soyuz TMA-M spacecraft, the Soyuz MS features minimal external changes, mainly in the placement of antennas, sensors, and thrusters. It is used by Roscosmos for human spaceflight missions.

Soyuz MS-01 conducted its maiden flight on 7 July 2016, heading to the International Space Station (ISS). The mission included a two-day checkout phase to validate the spacecraft’s new design before docking with the ISS on 9 July 2016. After remaining docked to the ISS for 113 days, the crew of MS-01 returned to Earth on 30 October 2016, safely landing on the Kazakh Steppe.

The spacecraft has experienced one in-flight abort during the Soyuz MS-10 mission. Shortly after the four boosters of its Soyuz FG carrier rocket separated, one collided with its core stage. The spacecraft’s onboard computer activated the launch escape system, which performed flawlessly, quickly pulling the reentry and orbital modules away from the failing rocket. Once at a safe distance, the system jettisoned the reentry module, allowing it to descend to the ground under parachutes. The crew landed unharmed.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne