Spontaneous symmetry breaking

Spontaneous symmetry breaking illustrated: At high energy levels (left), the ball settles in the center, and the result is symmetric. At lower energy levels (right), the overall "rules" remain symmetric, but the symmetric "sombrero" enforces an asymmetric outcome, since eventually the ball must rest at some random spot on the bottom, "spontaneously", and not all others.

Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state.[1][2][3] In particular, it can describe systems where the equations of motion or the Lagrangian obey symmetries, but the lowest-energy vacuum solutions do not exhibit that same symmetry. When the system goes to one of those vacuum solutions, the symmetry is broken for perturbations around that vacuum even though the entire Lagrangian retains that symmetry.

  1. ^ Miransky, Vladimir A. (1993). Dynamical Symmetry Breaking in Quantum Field Theories. World Scientific. p. 15. ISBN 9810215584.
  2. ^ Arodz, Henryk; Dziarmaga, Jacek; Zurek, Wojciech Hubert, eds. (30 November 2003). Patterns of Symmetry Breaking. Springer. p. 141. ISBN 9781402017452.
  3. ^ Cornell, James, ed. (21 November 1991). Bubbles, Voids and Bumps in Time: The New Cosmology. Cambridge University Press. p. 125. ISBN 9780521426732.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne