Square tiling

Square tiling
Square tiling
Type Regular tiling
Vertex configuration 4.4.4.4 (or 44)
Face configuration V4.4.4.4 (or V44)
Schläfli symbol(s) {4,4}
{∞}×{∞}
Wythoff symbol(s) 4 | 2 4
Coxeter diagram(s)




Symmetry p4m, [4,4], (*442)
Rotation symmetry p4, [4,4]+, (442)
Dual self-dual
Properties Vertex-transitive, edge-transitive, face-transitive

In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of {4,4}, meaning it has 4 squares around every vertex. Conway called it a quadrille.

The internal angle of the square is 90 degrees so four squares at a point make a full 360 degrees. It is one of three regular tilings of the plane. The other two are the triangular tiling and the hexagonal tiling.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne