Subunit vaccine

A subunit vaccine is a vaccine that contains purified parts of the pathogen that are antigenic, or necessary to elicit a protective immune response.[1][2] Subunit vaccine can be made from dissembled viral particles in cell culture or recombinant DNA expression,[3] in which case it is a recombinant subunit vaccine.

A "subunit" vaccine doesn't contain the whole pathogen, unlike live attenuated or inactivated vaccine, but contains only the antigenic parts such as proteins, polysaccharides[1][2] or peptides.[4] Because the vaccine doesn't contain "live" components of the pathogen, there is no risk of introducing the disease, and is safer and more stable than vaccines containing whole pathogens.[1] Other advantages include being well-established technology and being suitable for immunocompromised individuals.[2] Disadvantages include being relatively complex to manufacture compared to some vaccines, possibly requiring adjuvants and booster shots, and requiring time to examine which antigenic combinations may work best.[2]

The first recombinant subunit vaccine was produced in the mid-1980s to protect people from Hepatitis B. Other recombinant subunit vaccines licensed include Engerix-B (hepatitis B), Gardasil 9[5] (Human Papillomavirus), Flublok[6] (influenza), Shingrix[7] (Herpes zoster) and Nuvaxovid[8] (Coronavirus disease 2019).

After injection, antigens trigger the production of antigen-specific antibodies, which are responsible for recognising and neutralising foreign substances. Basic components of recombinant subunit vaccines include recombinant subunits, adjuvants and carriers. Additionally, recombinant subunit vaccines are popular candidates for the development of vaccines against infectious diseases (e.g. tuberculosis,[9] dengue[10]).

Recombinant subunit vaccines are considered to be safe for injection. The chances of adverse effects vary depending on the specific type of vaccine being administered. Minor side effects include injection site pain, fever, and fatigue, and serious adverse effects consist of anaphylaxis and potentially fatal allergic reaction. The contraindications are also vaccine-specific; they are generally not recommended for people with the previous history of anaphylaxis to any component of the vaccines. Advice from medical professionals should be sought before receiving any vaccination.

  1. ^ a b c "Module 2 - Subunit vaccines". WHO Vaccine Safety Basics e-learning course. Archived from the original on 2021-08-08.
  2. ^ a b c d "What are protein subunit vaccines and how could they be used against COVID-19?". GAVI. Archived from the original on 2021-08-17.
  3. ^ Francis MJ (March 2018). "Recent Advances in Vaccine Technologies". The Veterinary Clinics of North America. Small Animal Practice. Vaccines and Immunology. 48 (2): 231–241. doi:10.1016/j.cvsm.2017.10.002. PMC 7132473. PMID 29217317.
  4. ^ Lidder P, Sonnino A (2012). Biotechnologies for the Management of Genetic Resources for Food and Agriculture. Advances in Genetics. Vol. 78. Elsevier. pp. 1–167. doi:10.1016/B978-0-12-394394-1.00001-8. ISBN 9780123943941. PMID 22980921.
  5. ^ Cite error: The named reference :14 was invoked but never defined (see the help page).
  6. ^ "Flublok Quadrivalent (Influenza Vaccine)". Food and Drug Administration. Archived from the original on 2023-03-26. Retrieved 2023-04-02.
  7. ^ "Shingrix (Zoster Vaccine Recombinant, Adjuvanted)". Food and Drug Administration. Archived from the original on 2023-07-02. Retrieved 2023-04-02.
  8. ^ "Nuvaxovid dispersion for injection,COVID-19 Vaccine (recombinant, adjuvanted)" (PDF). Archived (PDF) from the original on 2022-08-17. Retrieved 2023-04-02.
  9. ^ Cite error: The named reference :23 was invoked but never defined (see the help page).
  10. ^ Cite error: The named reference :7 was invoked but never defined (see the help page).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne