Superfluidity

Helium II will "creep" along surfaces in order to find its own level—after a short while, the levels in the two containers will equalize. The Rollin film also covers the interior of the larger container; if it were not sealed, the helium II would creep out and escape.
The liquid helium is in the superfluid phase. A thin invisible film creeps up the inside wall of the bowl and down on the outside. A drop forms. It will fall off into the liquid helium below. This will repeat until the cup is empty—provided the liquid remains superfluid.

Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two isotopes of helium (helium-3 and helium-4) when they are liquefied by cooling to cryogenic temperatures. It is also a property of various other exotic states of matter theorized to exist in astrophysics, high-energy physics, and theories of quantum gravity.[1] The theory of superfluidity was developed by Soviet theoretical physicists Lev Landau and Isaak Khalatnikov.

Superfluidity often co-occurs with Bose–Einstein condensation, but neither phenomenon is directly related to the other; not all Bose–Einstein condensates can be regarded as superfluids, and not all superfluids are Bose–Einstein condensates.[2] Superfluids have some potential practical uses, such as dissolving substances in a quantum solvent.

  1. ^ "The Nobel Prize in Physics 1996 – Advanced Information". www.nobelprize.org. Retrieved 2017-02-10.
  2. ^ Liu, Jerry Z. (2021), Superfluids Are Not Fluids (PDF), Stanford University, retrieved 15 November 2024

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne