Y indicates that the column's property is always true for the row's term (at the very left), while ✗ indicates that the property is not guaranteed in general (it might, or might not, hold). For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by Y in the "Symmetric" column and ✗ in the "Antisymmetric" column, respectively.
All definitions tacitly require the homogeneous relation be transitive: for all if and then
A term's definition may require additional properties that are not listed in this table.
A symmetric relation is a type of binary relation. Formally, a binary relation R over a setX is symmetric if:[1]
where the notation aRb means that (a, b) ∈ R.
An example is the relation "is equal to", because if a = b is true then b = a is also true. If RT represents the converse of R, then R is symmetric if and only if R = RT.[2]