Thorium

Thorium, 90Th
Small (3 cm) ampule with a tiny (5 mm) square of metal in it
Thorium
Pronunciation/ˈθɔːriəm/ (THOR-ee-əm)
Appearancesilvery
Standard atomic weight Ar°(Th)
Thorium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Ce

Th

actiniumthoriumprotactinium
Atomic number (Z)90
Groupf-block groups (no number)
Periodperiod 7
Block  f-block
Electron configuration[Rn] 6d2 7s2
Electrons per shell2, 8, 18, 32, 18, 10, 2
Physical properties
Phase at STPsolid
Melting point2023 K ​(1750 °C, ​3182 °F)
Boiling point5061 K ​(4788 °C, ​8650 °F)
Density (at 20° C)11.725 g/cm3[3]
Heat of fusion13.81 kJ/mol
Heat of vaporisation514 kJ/mol
Molar heat capacity26.230 J/(mol·K)
Vapour pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 2633 2907 3248 3683 4259 5055
Atomic properties
Oxidation statescommon: +4
−1,[4] +1,? +2,[5] +3[5]
ElectronegativityPauling scale: 1.3
Ionisation energies
  • 1st: 587 kJ/mol
  • 2nd: 1110 kJ/mol
  • 3rd: 1930 kJ/mol
Atomic radiusempirical: 179.8 pm
Covalent radius206±6 pm
Color lines in a spectral range
Spectral lines of thorium
Other properties
Natural occurrenceprimordial
Crystal structureface-centred cubic (fcc) (cF4)
Lattice constant
Facecentredcubic crystal structure for thorium
a = 508.45 pm (at 20 °C)[3]
Thermal expansion11.54×10−6/K (at 20 °C)[3]
Thermal conductivity54.0 W/(m⋅K)
Electrical resistivity157 nΩ⋅m (at 0 °C)
Magnetic orderingparamagnetic[6]
Molar magnetic susceptibility132.0×10−6 cm3/mol (293 K)[7]
Young's modulus79 GPa
Shear modulus31 GPa
Bulk modulus54 GPa
Speed of sound thin rod2490 m/s (at 20 °C)
Poisson ratio0.27
Mohs hardness3.0
Vickers hardness295–685 MPa
Brinell hardness390–1500 MPa
CAS Number7440-29-1
History
Namingafter Thor, the Norse god of thunder
DiscoveryJöns Jakob Berzelius (1829)
Isotopes of thorium
Main isotopes[8] Decay
abun­dance half-life (t1/2) mode pro­duct
227Th trace 18.68 d α 223Ra
228Th trace 1.9116 y α 224Ra
229Th trace 7917 y[9] α 225Ra
230Th 0.02% 75400 y α 226Ra
231Th trace 25.5 h β 231Pa
232Th 100.0% 1.405×1010 y α 228Ra
233Th trace 21.83 min β 233Pa
234Th trace 24.1 d β 234Pa
 Category: Thorium
| references

Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive grey when it is exposed to air, forming thorium dioxide; it is moderately soft, malleable, and has a high melting point. Thorium is an electropositive actinide whose chemistry is dominated by the +4 oxidation state; it is quite reactive and can ignite in air when finely divided.

All known thorium isotopes are unstable. The most stable isotope, 232Th, has a half-life of 14.05 billion years, or about the age of the universe; it decays very slowly via alpha decay, starting a decay chain named the thorium series that ends at stable 208Pb. On Earth, thorium and uranium are the only elements with no stable or nearly-stable isotopes that still occur naturally in large quantities as primordial elements.[a] Thorium is estimated to be over three times as abundant as uranium in the Earth's crust, and is chiefly refined from monazite sands as a by-product of extracting rare-earth elements.

Thorium was discovered in 1828 by the Norwegian amateur mineralogist Morten Thrane Esmark and identified by the Swedish chemist Jöns Jacob Berzelius, who named it after Thor, the Norse god of thunder and war, because of its power.[10] Its first applications were developed in the late 19th century. Thorium's radioactivity was widely acknowledged during the first decades of the 20th century. In the second half of the century, thorium was replaced in many uses due to concerns about its radioactivity.

Thorium is still being used as an alloying element in TIG welding electrodes but is slowly being replaced in the field with different compositions. It was also material in high-end optics and scientific instrumentation, used in some broadcast vacuum tubes, and as the light source in gas mantles, but these uses have become marginal. It has been suggested as a replacement for uranium as nuclear fuel in nuclear reactors, and several thorium reactors have been built. Thorium is also used in strengthening magnesium, coating tungsten wire in electrical and welding equipment, controlling the grain size of tungsten in electric lamps, high-temperature crucibles, and glasses including camera and scientific instrument lenses. Other uses for thorium include heat-resistant ceramics, aircraft engines, and in light bulbs. Ocean science has utilised 231Pa/230Th isotope ratios to understand the ancient ocean.[11]

  1. ^ "Standard Atomic Weights: Thorium". CIAAW. 2013.
  2. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (4 May 2022). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  3. ^ a b c Arblaster, John W. (2018). Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International. ISBN 978-1-62708-155-9.
  4. ^ Th(-I) and U(-I) have been detected in the gas phase as octacarbonyl anions; see Chaoxian, Chi; Sudip, Pan; Jiaye, Jin; Luyan, Meng; Mingbiao, Luo; Lili, Zhao; Mingfei, Zhou; Gernot, Frenking (2019). "Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding". Chemistry (Weinheim an der Bergstrasse, Germany). 25 (50): 11772–11784. 25 (50): 11772–11784. doi:10.1002/chem.201902625. ISSN 0947-6539. PMC 6772027. PMID 31276242.
  5. ^ a b Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.
  6. ^ Lide, D. R., ed. (2005). "Magnetic susceptibility of the elements and inorganic compounds". CRC Handbook of Chemistry and Physics (PDF) (86th ed.). CRC Press. pp. 4–135. ISBN 978-0-8493-0486-6.
  7. ^ Weast, R. (1984). CRC, Handbook of Chemistry and Physics. Chemical Rubber Company Publishing. p. E110. ISBN 978-0-8493-0464-4.
  8. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  9. ^ Varga, Z.; Nicholl, A.; Mayer, K. (2014). "Determination of the 229Th half-life". Physical Review C. 89 (6): 064310. doi:10.1103/PhysRevC.89.064310.
  10. ^ "C&EN: IT'S ELEMENTAL: THE PERIODIC TABLE - THORIUM". pubsapp.acs.org. Retrieved 1 November 2024.
  11. ^ Negre, César et al. “Reversed flow of Atlantic deep water during the Last Glacial Maximum.” Nature, vol. 468,7320 (2010): 84–8. doi:10.1038/nature09508


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne