Time-invariant system

Block diagram illustrating the time invariance for a deterministic continuous-time single-input single-output system. The system is time-invariant if and only if y2(t) = y1(tt0) for all time t, for all real constant t0 and for all input x1(t).[1][2][3] Click image to expand it.

In control theory, a time-invariant (TI) system has a time-dependent system function that is not a direct function of time. Such systems are regarded as a class of systems in the field of system analysis. The time-dependent system function is a function of the time-dependent input function. If this function depends only indirectly on the time-domain (via the input function, for example), then that is a system that would be considered time-invariant. Conversely, any direct dependence on the time-domain of the system function could be considered as a "time-varying system".

Mathematically speaking, "time-invariance" of a system is the following property:[4]: p. 50 

Given a system with a time-dependent output function , and a time-dependent input function , the system will be considered time-invariant if a time-delay on the input directly equates to a time-delay of the output function. For example, if time is "elapsed time", then "time-invariance" implies that the relationship between the input function and the output function is constant with respect to time

In the language of signal processing, this property can be satisfied if the transfer function of the system is not a direct function of time except as expressed by the input and output.

In the context of a system schematic, this property can also be stated as follows, as shown in the figure to the right:

If a system is time-invariant then the system block commutes with an arbitrary delay.

If a time-invariant system is also linear, it is the subject of linear time-invariant theory (linear time-invariant) with direct applications in NMR spectroscopy, seismology, circuits, signal processing, control theory, and other technical areas. Nonlinear time-invariant systems lack a comprehensive, governing theory. Discrete time-invariant systems are known as shift-invariant systems. Systems which lack the time-invariant property are studied as time-variant systems.

  1. ^ Bessai, Horst J. (2005). MIMO Signals and Systems. Springer. p. 28. ISBN 0-387-23488-8.
  2. ^ Sundararajan, D. (2008). A Practical Approach to Signals and Systems. Wiley. p. 81. ISBN 978-0-470-82353-8.
  3. ^ Roberts, Michael J. (2018). Signals and Systems: Analysis Using Transform Methods and MATLAB® (3 ed.). McGraw-Hill. p. 132. ISBN 978-0-07-802812-0.
  4. ^ Oppenheim, Alan; Willsky, Alan (1997). Signals and Systems (second ed.). Prentice Hall.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne