Matrix with shifting rows
In linear algebra, a Toeplitz matrix or diagonal-constant matrix, named after Otto Toeplitz, is a matrix in which each descending diagonal from left to right is constant. For instance, the following matrix is a Toeplitz matrix:
![{\displaystyle \qquad {\begin{bmatrix}a&b&c&d&e\\f&a&b&c&d\\g&f&a&b&c\\h&g&f&a&b\\i&h&g&f&a\end{bmatrix}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c2ccf86d8431ab1a0ac5b44f12aee4cde9d7019e)
Any
matrix
of the form
![{\displaystyle A={\begin{bmatrix}a_{0}&a_{-1}&a_{-2}&\cdots &\cdots &a_{-(n-1)}\\a_{1}&a_{0}&a_{-1}&\ddots &&\vdots \\a_{2}&a_{1}&\ddots &\ddots &\ddots &\vdots \\\vdots &\ddots &\ddots &\ddots &a_{-1}&a_{-2}\\\vdots &&\ddots &a_{1}&a_{0}&a_{-1}\\a_{n-1}&\cdots &\cdots &a_{2}&a_{1}&a_{0}\end{bmatrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/64bf2b422691f92e04e72be203761c532cf905a2)
is a Toeplitz matrix. If the
element of
is denoted
then we have
![{\displaystyle A_{i,j}=A_{i+1,j+1}=a_{i-j}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b2b5faaf5cba3328a0cdfbda2de3ecfde3a91edd)
A Toeplitz matrix is not necessarily square.