Transfer DNA binary system

A transfer DNA (T-DNA) binary system is a pair of plasmids consisting of a T-DNA binary vector and a vir helper plasmid.[1][2] The two plasmids are used together (thus binary[2][3]) to produce genetically modified plants. They are artificial vectors that have been derived from the naturally occurring Ti plasmid found in bacterial species of the genus Agrobacterium, such as A. tumefaciens. The binary vector is a shuttle vector, so-called because it is able to replicate in multiple hosts (e.g. Escherichia coli and Agrobacterium).

Systems in which T-DNA and vir genes are located on separate replicons are called T-DNA binary systems. T-DNA is located on the binary vector (the non-T-DNA region of this vector containing origin(s) of replication that could function both in E. coli and Agrobacterium, and antibiotic resistance genes used to select for the presence of the binary vector in bacteria, became known as vector backbone sequences). The replicon containing the vir genes became known as the vir helper plasmid. The vir helper plasmid is considered disarmed if it does not contain oncogenes that could be transferred to a plant.

  1. ^ Lee LY, Gelvin SB (February 2008). "T-DNA binary vectors and systems". Plant Physiology. 146 (2): 325–32. doi:10.1104/pp.107.113001. PMC 2245830. PMID 18250230.
  2. ^ a b Hoekema A, Hirsch PR, Hooykaas PJ, Schilperoort RA (May 1983). "A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid". Nature. 303 (5913): 179–180. Bibcode:1983Natur.303..179H. doi:10.1038/303179a0. S2CID 4343344.
  3. ^ "As I remember, the "binary" refers to the function of interest being divided into two parts encoded by two separate plasmids rather than two bacterial hosts: we used the term "shuttle vectors" to refer to the multiple host property." (P. R. Hirsch, personal communication to T. Toal, Feb 27, 2013)

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne