Infinite sum of sines and cosines
In mathematics, trigonometric series are a special class of orthogonal series of the form
![{\displaystyle A_{0}+\sum _{n=1}^{\infty }A_{n}\cos {(nx)}+B_{n}\sin {(nx)},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/52147d26e360576c15ba6ac20ad9343258ae5f2e)
where
is the variable and
and
are coefficients. It is an infinite version of a trigonometric polynomial.
A trigonometric series is called the Fourier series of the integrable function
if the coefficients have the form:
![{\displaystyle A_{n}={\frac {1}{\pi }}\int _{0}^{2\pi }\!f(x)\cos {(nx)}\,dx}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5b879daae05c2f26210df1d483b6cdad4d69b632)
![{\displaystyle B_{n}={\frac {1}{\pi }}\displaystyle \int _{0}^{2\pi }\!f(x)\sin {(nx)}\,dx}](https://wikimedia.org/api/rest_v1/media/math/render/svg/241f26a59264728f3aa95154c309fbb7d4aefe2e)