In physics, a unified field theory (UFT) is a type of field theory that allows all fundamental forces and elementary particles to be written in terms of a single type of field. According to modern discoveries in physics, forces are not transmitted directly between interacting objects but instead are described and interpreted by intermediary entities called fields.[1][2] Furthermore, according to quantum field theory, particles are themselves the quanta of fields. Examples of different fields in physics include vector fields such as the electromagnetic field, spinor fields whose quanta are fermionic particles such as electrons, and tensor fields such as the metric tensor field that describes the shape of spacetime and gives rise to gravitation in general relativity. Unified field theory attempts to organize these fields into a single mathematical structure.
For over a century, unified field theory has remained an open line of research. The term was coined by Albert Einstein,[3] who attempted to unify his general theory of relativity with electromagnetism. Einstein attempted to create a classical unified field theory, rejecting quantum mechanics. Among other difficulties, this required a new explanation of particles as singularities or solitons instead of field quanta. Later attempts to unify general relativity with other forces incorporate quantum mechanics. The concept of a "Theory of Everything" [4] or Grand Unified Theory[5] are closely related to unified field theory, but differ by not requiring the basis of nature to be fields, and often by attempting to explain physical constants of nature. Additionally, Grand Unified Theories do not attempt to include the gravitational force and can therefore operate entirely within quantum field theory.
The goal of a unified field theory has led to a great deal of progress in theoretical physics.[6]