Wave function

Quantum harmonic oscillators for a single spinless particle. The oscillations have no trajectory, but are instead represented each as waves; the vertical axis shows the real part (blue) and imaginary part (red) of the wave function. Panels (A-D) show four different standing-wave solutions of the Schrödinger equation. Panels (E–F) show two different wave functions that are solutions of the Schrödinger equation but not standing waves.
The wave function of an initially very localized free particle.

In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ (lower-case and capital psi, respectively). Wave functions are complex-valued. For example, a wave function might assign a complex number to each point in a region of space. The Born rule[1][2][3] provides the means to turn these complex probability amplitudes into actual probabilities. In one common form, it says that the squared modulus of a wave function that depends upon position is the probability density of measuring a particle as being at a given place. The integral of a wavefunction's squared modulus over all the system's degrees of freedom must be equal to 1, a condition called normalization. Since the wave function is complex-valued, only its relative phase and relative magnitude can be measured; its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables. One has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.

Wave functions can be functions of variables other than position, such as momentum. The information represented by a wave function that is dependent upon position can be converted into a wave function dependent upon momentum and vice versa, by means of a Fourier transform. Some particles, like electrons and photons, have nonzero spin, and the wave function for such particles includes spin as an intrinsic, discrete degree of freedom; other discrete variables can also be included, such as isospin. When a system has internal degrees of freedom, the wave function at each point in the continuous degrees of freedom (e.g., a point in space) assigns a complex number for each possible value of the discrete degrees of freedom (e.g., z-component of spin). These values are often displayed in a column matrix (e.g., a 2 × 1 column vector for a non-relativistic electron with spin 12).

According to the superposition principle of quantum mechanics, wave functions can be added together and multiplied by complex numbers to form new wave functions and form a Hilbert space. The inner product of two wave functions is a measure of the overlap between the corresponding physical states and is used in the foundational probabilistic interpretation of quantum mechanics, the Born rule, relating transition probabilities to inner products. The Schrödinger equation determines how wave functions evolve over time, and a wave function behaves qualitatively like other waves, such as water waves or waves on a string, because the Schrödinger equation is mathematically a type of wave equation. This explains the name "wave function", and gives rise to wave–particle duality. However, the wave function in quantum mechanics describes a kind of physical phenomenon, as of 2023 still open to different interpretations, which fundamentally differs from that of classic mechanical waves.[4][5][6][7][8][9][10]

  1. ^ Cite error: The named reference Born_1926_A was invoked but never defined (see the help page).
  2. ^ Cite error: The named reference Born_1926_B was invoked but never defined (see the help page).
  3. ^ Born, M. (1954).
  4. ^ Born 1927, pp. 354–357.
  5. ^ Heisenberg 1958, p. 143.
  6. ^ Heisenberg, W. (1927/1985/2009). Heisenberg is translated by Camilleri 2009, p. 71, (from Bohr 1985, p. 142).
  7. ^ Murdoch 1987, p. 43.
  8. ^ de Broglie 1960, p. 48.
  9. ^ Landau & Lifshitz 1977, p. 6.
  10. ^ Newton 2002, pp. 19–21.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne