Wiles's proof of Fermat's Last Theorem

Sir Andrew John Wiles

Wiles's proof of Fermat's Last Theorem is a proof by British mathematician Sir Andrew Wiles of a special case of the modularity theorem for elliptic curves. Together with Ribet's theorem, it provides a proof for Fermat's Last Theorem. Both Fermat's Last Theorem and the modularity theorem were believed to be impossible to prove using previous knowledge by almost all living mathematicians at the time.[1]: 203–205, 223, 226 

Wiles first announced his proof on 23 June 1993 at a lecture in Cambridge entitled "Modular Forms, Elliptic Curves and Galois Representations".[2] However, in September 1993 the proof was found to contain an error. One year later on 19 September 1994, in what he would call "the most important moment of [his] working life", Wiles stumbled upon a revelation that allowed him to correct the proof to the satisfaction of the mathematical community. The corrected proof was published in 1995.[3]

Wiles's proof uses many techniques from algebraic geometry and number theory and has many ramifications in these branches of mathematics. It also uses standard constructions of modern algebraic geometry such as the category of schemes, significant number theoretic ideas from Iwasawa theory, and other 20th-century techniques which were not available to Fermat. The proof's method of identification of a deformation ring with a Hecke algebra (now referred to as an R=T theorem) to prove modularity lifting theorems has been an influential development in algebraic number theory.

Together, the two papers which contain the proof are 129 pages long[4][5] and consumed over seven years of Wiles's research time. John Coates described the proof as one of the highest achievements of number theory, and John Conway called it "the proof of the [20th] century."[6] Wiles's path to proving Fermat's Last Theorem, by way of proving the modularity theorem for the special case of semistable elliptic curves, established powerful modularity lifting techniques and opened up entire new approaches to numerous other problems. For proving Fermat's Last Theorem, he was knighted, and received other honours such as the 2016 Abel Prize. When announcing that Wiles had won the Abel Prize, the Norwegian Academy of Science and Letters described his achievement as a "stunning proof".[3]

  1. ^ Cite error: The named reference Singh was invoked but never defined (see the help page).
  2. ^ Kolata, Gina (24 June 1993). "At Last, Shout of 'Eureka!' In Age-Old Math Mystery". The New York Times. Archived from the original on 26 July 2023. Retrieved 21 January 2013.
  3. ^ a b "The Abel Prize 2016". Norwegian Academy of Science and Letters. 2016. Archived from the original on 20 May 2020. Retrieved 29 June 2017.
  4. ^ Cite error: The named reference wiles1995 was invoked but never defined (see the help page).
  5. ^ Cite error: The named reference taylor1995 was invoked but never defined (see the help page).
  6. ^ "NOVA – Transcripts – The Proof – PBS". PBS. September 2006. Archived from the original on 6 June 2017. Retrieved 29 June 2017.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne