Yellowstone Caldera | |
---|---|
Highest point | |
Elevation | 9,203 ft (2,805 m) |
Coordinates | 44°24′N 110°42′W / 44.400°N 110.700°W |
Geography | |
Location | Yellowstone National Park, Wyoming, United States |
Parent range | Rocky Mountains |
Topo map | USGS Yellowstone National Park |
Geology | |
Rock age | 2,150,000–70,000 years |
Volcanic field | Yellowstone Plateau |
Last eruption | 70,000 years ago |
Climbing | |
Easiest route | Hike/auto/bus |
Yellowstone Caldera, also known as the Yellowstone Plateau Volcanic Field, is a Quaternary caldera complex and volcanic plateau spanning parts of Wyoming, Idaho, and Montana. It is driven by the Yellowstone hotspot and is largely within Yellowstone National Park. The field comprises four overlapping calderas, multiple lava domes, resurgent domes, crater lakes, and numerous bimodal lavas and tuffs of basaltic and rhyolitic composition, originally covering about 17,000 km2 (6,600 sq mi).
Volcanism began 2.15 million years ago and proceeded through three major volcanic cycles. Each cycle involved a large ignimbrite eruption, continental-scale ash-fall, and caldera collapse, preceded and followed by smaller lava flows and tuffs. The first and also the largest cycle was the Huckleberry Ridge Tuff eruption about 2.08 million years ago, which formed the Island Park Caldera. The most recent supereruption, about 0.63 million years ago, produced the Lava Creek Tuff and created the present Yellowstone Caldera. Post-caldera eruptions included basalt flows, rhyolite domes and flows, and minor explosive deposits, with the last magmatic eruption about 70,000 years ago. Large hydrothermal explosions also occurred during the Holocene.
From 2004 to 2009, the region experienced notable uplift attributed to new magma injection. The 2005 docudrama Supervolcano, produced by the BBC and the Discovery Channel, increased public attention on the potential for a future catastrophic eruption. The Yellowstone Volcano Observatory monitors volcanic activity and does not consider an eruption imminent. Imaging of the magma reservoir indicates a substantial volume of partial melt beneath Yellowstone that is not currently eruptible.