En topologio kaj rilatantaj kampoj de matematiko, estas kelkaj limigoj kiujn oni ofte konstruas sur la specoj de topologiaj spacaj kiujn onu deziras konsideri. Iu el ĉi tiuj limigoj estas donita per la apartigaj aksiomoj. Ili estas iam nomitaj kiel apartigaj aksiomoj de Tiĥonov, honore al Andrej Tiĥonov.
La apartigaj aksiomoj estas aksiomoj nur en la senco, ke difinante la nocion de topologia spaco, oni povus aldoni ĉi tiujn kondiĉojn kiel superfluaj aksiomoj por preni pli limigitan nocion de tio, kia estas topologia spaco. La moderna aliro estas fiksi verecon aŭ ne postulon de vereco de apartigaj aksiomoj por ĉiu aksiomigo de topologia spaco kaj tiam paroli pri specoj de topologiaj spacoj. Tamen, la termino "apartiga aksiomo" enradikiĝis. La apartigaj aksiomoj estas signitaj per la litero) "T" post la Germana "Trennung", signifas apartigo.
La precizaj signifoj de la terminoj asociitaj kun la apartigaj aksiomoj diversiĝis tra la tempo, kiel estas eksplikite en historio de la apartigaj aksiomoj. Aparte legante pli malnovan literaturon, necesas certiĝi en kompreno de uzataj de la aŭtoro difinoj de ĉiu kondiĉoj.
Antaŭ oni difinas la spacoj priskribitajn per la apartigaj aksiomoj, oni bezonas difini iun terminologion por doni konkretan signifon al la koncepto de apartigo.