En lineara algebro, simetria matrico estas kvadrata matrico, A kiu estas egala al sia transpono:
La elementoj de simetria matrico estas simetriaj kun respekto al la ĉefdiagonalo . Tiel se la elementoj estas A=(aij), do aij=aji por ĉiuj eblaj valoroj de i kaj j.
Jen estas ekzemplo de 3×3 simetria matrico:
Matrico estas kontraŭsimetria matrico (aŭ deklivo-simetria aŭ malsimetria) se ĝia transpono estas la sama kiel ĝia negativo. Jen estas ekzemplo de 3×3 kontraŭsimetria matrico:
Ĉiu diagonala matrico estas simetria pro tio ke ĉiuj kromdiagonalaj elementoj estas nulaj. Simile, ĉiu diagonala ero de kontraŭsimetria matrico devas esti nulo pro tio ke ĝi egalas al sia negativo.
Simetria matrico prezentas hermitan operatoron super reela ena produta spaco. La respektiva objekto por kompleksa ena produta spaco estas memadjunkta matrico kun komplekso-valoraj elementoj, kiu estas egala al sia konjugita transpono. Reela simetria matrico estas la specifa okazo de memadjunkta matrico. Pro ĉi ĉio, ofte estas ĝenerale alprenite ke simetria matrico havas reelo-valorajn elementojn.
Simetriaj matricoj aperi nature en diversaj de aplikoj, kaj ofte cifereca lineara algebra programaro havas specialajn datumaranĝojn por ili. Simetria n×n matrico estas difinita per n(n+1)/2 skalaroj. Kontraŭsimetria n×n matrico estas difinita per n(n-1)/2 skalaroj.