Acoplamiento de momento angular

En mecánica cuántica, el procedimiento de construir estados propios del momento angular total (estados de un sistema con valores bien definidos del momento angular) a partir de los estados propios de los momentos angulares individuales se llama acoplamiento de momentos angulares. Se utiliza cuando, a causa de una interacción física entre dos momentos angulares, estos ya no son constantes del movimiento independientes (sus valores individuales ya no siguen leyes de conservación), pero la suma de los dos momentos angulares normalmente sí lo es. Por ejemplo, el espín y el movimiento de un electrón pueden interaccionar por acoplamiento espín-órbita, en cuyo caso es útil acoplar sus momentos angulares orbital y de espín. O dos partículas cargadas, cada una con un momento angular bien definido, pueden interaccionar por fuerzas de Coulomb, y entonces es útil acoplar los momentos angulares de cada partícula resultando en un momento angular total, como paso para la resolución de la ecuación de Schrödinger de dos partículas.

El acoplamiento de momentos angulares en átomos es importante para explicar experimentos de espectroscopia atómica. El acoplamiento de momentos angulares de espines electrónicos es de importancia en la parte de la química cuántica que estudia la magnetoquímica, y en la parte de la física cuántica que estudia la física de la materia condensada.

En astronomía, el acoplamiento de momentos angulares refleja la ley general de conservación del momento angular que también es válida en objetos celestes. En casos simples, la dirección del vector momento angular se desprecia, y el acoplamiento espín-órbita es la razón entre la frecuencia con la que un planeta u otro cuerpo celeste rota sobre su propio eje y aquella con la que orbita alrededor de otro cuerpo. Esto se conoce comúnmente como resonancia orbital. Frecuentemente, los efectos físicos subyacentes son las fuerzas de marea.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne