Aerogeneradores de eje vertical

Aerogenerador vertical en Cap-Chat

Los aerogeneradores de eje vertical (AEV) son un tipo de turbina eólica que fue diseñada por primera vez por el inventor croata Fausto Verancio, en su libro Machinae novae de 1615. El eje del rotor principal está colocado transversalmente al viento (pero no necesariamente en vertical) mientras que los componentes principales están situados en la base de la turbina. Esta disposición permite situar el generador y los mecanismos cerca del suelo, lo que facilita el servicio y la reparación. Las AEV no necesitan estar orientadas hacia el viento,[1][2]​ lo que elimina la necesidad de mecanismos de detección y orientación del viento. Los principales inconvenientes de los primeros diseños (Savonius, Darrieus y Giromill) eran la importante variación del par o "ondulación" durante cada revolución y los grandes momentos de flexión de las palas. Los diseños posteriores solucionaron el problema de la ondulación del par barriendo las palas helicoidalmente (tipo Gorlov[3]​). Los aerogeneradores de eje vertical Savonius (VAWT) no están muy extendidos, pero su simplicidad y su mejor rendimiento en campos de flujo perturbado, en comparación con los pequeños aerogeneradores de eje horizontal (AEH), los convierten en una buena alternativa para los dispositivos de generación distribuida en el entorno urbano.[4]

Un aerogenerador de eje vertical tiene su eje perpendicular a las líneas de corriente del viento y vertical al suelo. Un término más general que incluye esta opción es "aerogenerador de eje transversal" o "aerogenerador de flujo cruzado". Por ejemplo, la patente original de Darrieus, US Patent 1835018, incluye ambas opciones. Las VAWT de tipo arrastre, como el rotor Savonius, suelen funcionar con relaciones de velocidad de punta más bajas que las VAWT basadas en la sustentación, como los rotores Darrieus y las cicloturbinas. Los modelos informáticos sugieren que los parques eólicos construidos con aerogeneradores de eje vertical son un 15% más eficientes que los convencionales de eje horizontal, ya que generan menos turbulencias.[5][6]

  1. Raciti Castelli, Marco; Englaro, Alessandro; Benini, Ernesto (2011). «The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD». Energy 36 (8): 4919-34. doi:10.1016/j.energy.2011.05.036. 
  2. Jha, A.R. (2010). Wind turbine technology. Boca Raton, FL: CRC Press. [página requerida]
  3. «ShieldSquare Captcha». hkvalidate.perfdrive.com. doi:10.1088/1742-6596/753/6/062009/pdf. Archivado desde el original el 6 de julio de 2021. Consultado el 3 de julio de 2021. 
  4. «Impact of urban environment on Savonius wind turbine performance: A numerical perspective». Renewable Energy 156: 407-422. 1 de agosto de 2020. doi:10.1016/j.renene.2020.03.101 – via www.sciencedirect.com. 
  5. «Vertical turbines could be the future for wind farms». EurekAlert!. 
  6. «Numerical modelling and optimization of vertical axis wind turbine pairs: A scale up approach». Renewable Energy (en inglés) 171: 1371-1381. 1 de junio de 2021. ISSN 0960-1481. doi:10.1016/j.renene.2021.03.001. Consultado el 3 de julio de 2021. 

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne