En estadística y aprendizaje automático, los métodos por conjuntos utilizan múltiples algoritmos de aprendizaje para obtener un rendimiento predictivo mejor que el que podría obtenerse con cualquiera de los algoritmos de aprendizaje constituyentes por sí solos.[1][2][3] A diferencia de un conjunto estadístico en mecánica estadística, que suele ser infinito, un conjunto de aprendizaje automático consta únicamente de un conjunto finito concreto de modelos alternativos, pero normalmente permite que exista una estructura mucho más flexible entre esas alternativas.