Copo de nieve de Koch

Concepción artística de un Copo de Koch. Llamamos copo de Koch a la curva que describe el contorno de la figura.

El copo de nieve de Koch, también llamado estrella de Koch o isla de Koch,[1]​ es una curva cerrada continua pero no diferenciable en ningún punto descrita por el matemático sueco Helge von Koch en 1904 en un artículo titulado «Acerca de una curva continua que no posee tangentes y obtenida por los métodos de la geometría elemental».[2][3]

En lenguaje actual, diríamos que es una curva fractal. Su construcción más simple se realiza mediante un proceso iterativo que se inicia partiendo en tres un segmento de recta e insertando dos más en el tercero medio a manera de un triángulo equilátero, el proceso se repite infinidad de veces. La curva de Koch es un caso particular de curva de De Rham.

  1. Addison, Paul S. (1997). Fractals and Chaos: An Illustrated Course. Institute of Physics. p. 19. ISBN 0-7503-0400-6. 
  2. Koch, H. von. Sur une courbe continue sans tangente, obtenue par une construction géometrique élémentaire. Arkiv för Matematik Astronomi och Fysik 1 (1904) 681-704.
  3. Koch, H. von. Une méthode géométrique élémentaire pour l'étude de certaines questions de la théorie des courbes planes. Acta Math. 30, 145-174, 1906. (Reproduce y amplía el artículo de 1904, puede consultarse online en archive.org)

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne