Derivada parcial

En matemáticas, la derivada parcial de una función de varias variables es la derivada con respecto a cada una de esas variables manteniendo las otras como constantes. Las derivadas parciales son usadas en cálculo vectorial y geometría diferencial.

La derivada parcial de una función con respecto a la variable se puede denotar de distintas maneras:

Donde es la letra 'd' redondeada, conocida como la 'd de Jacobi'. También se puede representar como que es la primera derivada respecto a la variable y así sucesivamente.[1]​ Uno de los primeros usos conocidos de este símbolo en matemáticas es por el Marqués de Condorcet de 1770, quien lo usó para diferencias parciales. La notación moderna de derivadas parciales fue creada por Adrien-Marie Legendre (1786), aunque más tarde la abandonó; Carl Gustav Jacob Jacobi reintrodujo el símbolo en 1841.[2]

Cuando una magnitud es función de diversas variables (), es decir:

Al realizar esta derivada obtenemos la expresión que nos permite calcular la pendiente de la recta tangente a dicha función en un punto dado. Esta recta es paralela al plano formado por el eje de la incógnita respecto a la cual se ha hecho la derivada con el eje que representa los valores de la función.

Analíticamente el gradiente de una función es la máxima pendiente de dicha función en la dirección que se elija. Mientras visto desde el álgebra lineal, la dirección del gradiente nos indica hacia donde hay mayor variación en la función.

El símbolo utilizado para denotar derivadas parciales es . Uno de los primeros usos conocidos de este símbolo en matemáticas es el del Marqués de Condorcet de 1770, que lo utilizó para la diferencias parciales. La notación moderna de la derivada parcial fue creada por Adrien-Marie Legendre (1786), aunque posteriormente la abandonó; Carl Gustav Jacob Jacobi reintrodujo el símbolo en 1841.[2]

  1. Serge Lang. Cálculo II. ISBN 968-6630-12-0
  2. a b Miller, Jeff (14 de junio de 2009). «Earliest Uses of Symbols of Calculus». Earliest Uses of Various Mathematical Symbols. Consultado el 20 de febrero de 2009. 

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne