Diagrama de Penrose-Carter

Diagrama de Penrose de un espacio-tiempo de Minkowski infinito. Elimina dos dimensiones espaciales y concentra en una región finita (en este caso con forma de diamante) el resto mediante el efecto de una transformación conforme.

En física teórica, al tratar de representar pictóricamente un espacio-tiempo surgen dos problemas:

  • el espacio-tiempo es una variedad de dimensión 4. Podemos obviar esto usando las simetrías del mismo, en caso de tenerlas, y representar una subvariedad de dimensión 2. Por ejemplo, para un espacio-tiempo esféricamente simétrico todos los puntos de una 2-esfera son equivalentes y se pueden representar por un solo punto de un diagrama.
  • las coordenadas del mismo se extienden hasta infinito. Esto puede solventarse sustituyendo el espaciotiempo físico por un espaciotiempo no físico (nuestro diagrama) conforme con el primero.

Ambos problemas quedan solventados con los diagramas conocidos como diagramas conformes, diagramas de Penrose-Carter o simplemente diagramas de Penrose, diagramas bidimensionales que conservan la información sobre las relaciones causales entre diversos puntos del espacio-tiempo y permiten representar regiones infinitas en diagramas finitos.[1]​ Para ello, sacrifican información sobre las distancias entre puntos. La métrica de los diagramas de Penrose-Carter es conformemente equivalente con una restricción bidimensional de la métrica real del espacio-tiempo que representan. El factor conforme es elegido de modo que todo el espacio-tiempo se proyecte en un diagrama de dimensiones finitas. La frontera de la nueva figura no formará parte del espaciotiempo original, pero permitirá estudiar sus propiedades asintóticas y sus singularidades.

Llamado así en homenaje al físico matemático Roger Penrose, por usarlos por vez primera en 1962[2]​ y a su colega Brandon Carter, que los sistematizó en 1966,[3]​ un diagrama de Penrose-Carter comparte varias características con el espacio-tiempo de Minkowski: las líneas oblicuas a 45° corresponden a trayectorias luminosas, la dimensión vertical representa una coordenada temporal y la horizontal a las dimensiones espaciales.

  1. Penrose, Roger, El camino a la realidad: Una guía completa de las leyes del universo, Editorial Debate, 2006, ISBN 84-8306-681-5. (cap. 27)
  2. Penrose, R. The Light Cone at Infinity. In Proceedings of the 1962 Conference on Relativistic Theories of Gravitation Warsaw. Polish Academy of Sciences, Warsaw. (Published 1965.)
  3. B. Carter, Complete analytic extension of the symmetry axis of Kerr’s solution of Einstein’s equations, Phys. Rev. 141, 1242–1247 (1966).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne