En dibujo de grafos y en teoría de grafos geométrica, un embebido de Tutte o incrustación baricéntrica de un grafo plano 3-vértices-conectado simple es un embebido de líneas rectas sin cruces con las propiedades de que la cara exterior es un polígono convexo y de que cada vértice interior está en el centroide (o baricentro) de las posiciones de sus vecinos. Si el polígono exterior es fijo, esta condición en los vértices interiores determina su posición únicamente como solución a un sistema de ecuaciones lineales. Resolver las ecuaciones geométricamente produce un embebido plano. El teorema del resorte de Tutte, probado por W. T. Tutte, 1963, establece que esta solución única siempre está libre de cruces, y como una condición más fuerte, que cada cara del embebido plano resultante es convexa.[1] Se llama el teorema del resorte porque dicho embebido se puede encontrar como la posición de equilibrio para un sistema de resortes que representa los bordes del grafo.