Modelo de Wess-Zumino-Witten

En física teórica y matemáticas, un modelo de Wess-Zumino-Witten (WZW), también llamado modelo de Wess-Zumino-Novikov-Witten, es un tipo de teoría de campos conforme bidimensional que lleva el nombre de Julius Wess, Bruno Zumino, Sergei Novikov y Eduardo Witten. [1][2][3][4]​ Un modelo WZW está asociado a un grupo de Lie (o supergrupo), y su álgebra de simetría es el álgebra de Lie afín construida a partir del álgebra de Lie correspondiente (o superálgebra de Lie). Por extensión, el nombre modelo WZW se utiliza a veces para cualquier teoría de campos conforme cuya álgebra de simetría sea un álgebra de Lie afín. [5]

  1. Wess, J.; Zumino, B. (1971). «Consequences of anomalous ward identities». Physics Letters B 37 (1): 95-97. Bibcode:1971PhLB...37...95W. doi:10.1016/0370-2693(71)90582-X. 
  2. Witten, E. (1983). «Global aspects of current algebra». Nuclear Physics B 223 (2): 422-432. Bibcode:1983NuPhB.223..422W. doi:10.1016/0550-3213(83)90063-9. 
  3. Witten, E. (1984). «Non-abelian bosonization in two dimensions». Communications in Mathematical Physics 92 (4): 455-472. Bibcode:1984CMaPh..92..455W. doi:10.1007/BF01215276. 
  4. Novikov, S. P. (1981). «Multivalued functions and functionals. An analogue of the Morse theory». Sov. Math., Dokl. 24: 222-226. ; Novikov, S. P. (1982). «The Hamiltonian formalism and a many-valued analogue of Morse theory». Russian Mathematical Surveys 37 (5): 1-9. Bibcode:1982RuMaS..37....1N. doi:10.1070/RM1982v037n05ABEH004020. 
  5. Di Francesco, P.; Mathieu, P.; Sénéchal, D. (1997), Conformal Field Theory, Springer-Verlag, ISBN 0-387-94785-X .

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne