Programa de Hilbert

En matemáticas, el Programa de Hilbert, formulado por el matemático alemán David Hilbert en la década de 1920, fue una solución propuesta ante la crisis fundacional de las matemáticas, en épocas en que en los primeros intentos por clarificar los fundamentos de la matemática contenían paradojas e inconsistencias. Como solución, Hilbert propuso basarse en todas las teorías existentes para formar un conjunto de axiomas finito y completo, y proveer prueba de que esos axiomas eran consistentes. El alemán propuso que la consistencia de sistemas más complicados, como el análisis real, podrían ser probados en términos de sistemas más simples. Últimamente, la consistencia de toda la matemática puede ser reducida a aritmética básica.

No obstante los teoremas de incompletitud de Gödel, formulados por el matemático austrohúngaro Kurt Gödel, demostraron en 1931 que el programa de Hilbert era inalcanzable. En su primer teorema mostró que cualquier sistema consistente con un conjunto computable de axiomas, capaz de expresar aritmética nunca puede ser completo: es posible construir una afirmación que puede ser demostrada como verdadera, pero no puede ser derivada de las reglas formales del sistema. En su segundo teorema, Gödel mostró que un sistema como aquel no podría probar su propia consistencia, de modo que tampoco puede ser usado para probar la consistencia de nada más fuerte. Esto contradijo la suposición de Hilbert de que un sistema finitista podía ser usado para probar la consistencia de una teoría más fuerte.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne