Red neuronal convolucional

Funcionamiento de las Redes Neuronales

Una red neuronal convolucional es un tipo de red neuronal artificial donde las neuronas artificiales, corresponden a campos receptivos de una manera muy similar a las neuronas en la corteza visual primaria (V1) de un cerebro biológico.[1][2]​Este tipo de red es una variación de un perceptron multicapa, sin embargo, debido a que su aplicación es realizada en matrices bidimensionales, son muy efectivas para tareas de visión artificial, como en la clasificación y segmentación de imágenes, entre otras aplicaciones.[3]

  1. Celeghin, Alessia; Borriero, Alessio; Orsenigo, Davide; Diano, Matteo; Méndez Guerrero, Carlos Andrés; Perotti, Alan; Petri, Giovanni; Tamietto, Marco (6 de julio de 2023). «Convolutional neural networks for vision neuroscience: significance, developments, and outstanding issues». Frontiers in Computational Neuroscience 17. ISSN 1662-5188. PMC 10359983. PMID 37485400. doi:10.3389/fncom.2023.1153572. Consultado el 31 de octubre de 2024. 
  2. Yamashita, Rikiya; Nishio, Mizuho; Do, Richard Kinh Gian; Togashi, Kaori (2018-08). «Convolutional neural networks: an overview and application in radiology». Insights into Imaging (en inglés) 9 (4): 611-629. ISSN 1869-4101. PMC 6108980. PMID 29934920. doi:10.1007/s13244-018-0639-9. Consultado el 31 de octubre de 2024. 
  3. Cruz, Y.J.; Rivas, M.; Quiza, R.; Villalonga, A.; Haber, R.E.; Beruvides, G. (December 2021). «Ensemble of convolutional neural networks based on an evolutionary algorithm applied to an industrial welding process». Computers in Industry. 133. doi:10.1016/j.compind.2021.103530. 

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne