La similitud coseno es una medida de la similitud existente entre dos vectores en un espacio que posee un producto interior con el que se evalúa el valor del coseno del ángulo comprendido entre ellos. Esta función trigonométrica proporciona un valor igual a 1 si el ángulo comprendido es cero, es decir si ambos vectores apuntan a un mismo lugar. Cualquier ángulo existente entre los vectores, el coseno arrojaría un valor inferior a uno. Si los vectores fuesen ortogonales el coseno se anularía, y si apuntasen en sentido contrario su valor sería -1. De esta forma, el valor de esta métrica se encuentra entre -1 y 1, es decir en el intervalo cerrado [-1,1].
Esta distancia se emplea frecuentemente en la búsqueda y recuperación de información representando las palabras (o documento) en un espacio vectorial.[1] En minería de textos se aplica la similitud coseno con el objeto de establecer una métrica de semejanza entre textos.[2] En minería de datos se suele emplear como un indicador de cohesión de clústeres de textos. La similitud coseno no debe ser considerada como una métrica debido a que no cumple la desigualdad triangular.