El teorema de Viviani, llamado así en honor del matemático florentino Vincenzo Viviani, enuncia que en un triángulo equilátero la suma de las distancias desde un punto interior de él a cada uno de los lados es igual a la altura del triángulo. Viviani demostró un resultado más general en su libro De Maximis et Minimis Geometrica Divinatio in Quintum Conicorum Apollonii Pergaei, de 1659.
El teorema se puede extender a polígonos equiláteros y polígonos equiangulares. Específicamente, la suma de las distancias desde un punto hasta los lados de un polígono equilátero o equiangular no depende del punto.[1]