Teoremas de Sylow

En matemáticas, específicamente en teoría de grupos, los teoremas de Sylow son una serie de teoremas nombrados en honor del matemático noruego Peter Ludwig Mejdell Sylow[1]​ que proporcionan información detallada sobre el número de subgrupos de orden fijo contenidos en un grupo finito dado. Los teoremas de Sylow son una parte fundamental de la teoría de grupos finitos y tienen aplicaciones muy importantes en la clasificación de los grupos finitos simples.

Para un número primo p, un p-subgrupo de Sylow de un grupo G es un p-subgrupo maximal de G, es decir, un subgrupo cuyo orden es una potencia de p y que no está contenido estrictamente en otro p-grupo. Es decir, es un grupo de orden pk que no está contenido en ningún subgrupo de orden pr donde k<r. El conjunto de todos los subgrupos de Sylow de un grupo G se suele denotar como Sylp(G).

Los teoremas de Sylow constituyen reciprocas parciales al teorema de Lagrange el cual afirma que para todo grupo finito G, el orden de cualquier subgrupo debe dividir al orden de G. En sentido contrario, para cualquier factor primo p del orden de un grupo finito G, existirá un p-subgrupo de Sylow de orden pn donde n es precisamente la multiplicidad del factor primo p en el orden de G y cualquier subgrupo con el mismo orden será también un p-subgrupo de Sylow.

Todos los subgrupos de Sylow de un grupo fijo y un primo dado son conjugados entre sí. Finalmente, el último teorema de Sylow establece una condición sobre el número posible de p-subgrupos de Sylow, indicando que este número será congruente a 1 módulo p.

  1. Sylow, 1872.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne