El tercer problema de Hilbert, forma parte de la lista de 23 cuestiones presentada en 1900 por el matemático alemán David Hilbert, y fue el primero en resolverse. El problema está relacionado con la siguiente pregunta:
|
Basado en escritos anteriores de Gauss,[1] Hilbert conjeturó que esto no siempre es posible. Esto fue confirmado durante el mismo año en el que se publicó la lista por su alumno Max Dehn, quien demostró que la respuesta en general es "no", al hallar un contraejemplo.[2]
La respuesta para la pregunta análoga sobre polígonos en 2 dimensiones es "sí" y se conocía desde hacía mucho tiempo; según una proposición conocida como el teorema de Wallace–Bolyai–Gerwien.
Aunque Hilbert y Dehn no lo sabían, el tercer problema de Hilbert también fue propuesto independientemente por Władysław Kretkowski para un concurso de matemáticas de 1882 organizado por la Academia de Artes y Ciencias de Cracovia, y fue resuelto por Ludwik Antoni Birkenmajer con un método diferente al de Dehn. Birkenmajer no publicó el resultado y el manuscrito original que contenía su solución fue redescubierto años después.[3]