Reaalarv

Reaalarvude hulk ℝ sisaldab kõigi ratsionaalarvude hulka ℚ, mis omakorda sisaldab kõigi täisarvude hulka ℤ, mis sisaldab kõigi naturaalarvude hulka ℕ

Reaalarvud on kõik ratsionaal- ja irratsionaalarvud ehk kõik positiivsed ja negatiivsed arvud ja null ehk kõik algebralised arvud ja transtsendentsed arvud.

Reaalarvud moodustavad reaalarvude hulga ehk R ning tähtsaima arvuvalla matemaatikas.

Arvsirge, millel on näidatud arvude (ruutjuur kahest), e ja π asukoht

Reaalarvud on konstrueeritud nii, et oleks võimalik loomulik üksühene vastavus reaalarvude hulga ja sirge (arvsirge) punktide hulga vahel. Sellepärast samastatakse reaalarvude hulk mõnikord arvsirgega.

Nimetus "reaalarv" ('tegelik arv') iseloomustab erinevust imaginaararvudest.

Reaalarvu mõiste väljakujunemine võttis palju aega. Vana-Kreeka matemaatikas Pythagorase koolkonnas, kus kõige aluseks peeti naturaalarve ja nende suhteid, avastati, et on olemas ühismõõdutud suurused (ruudu külje ja diagonaali ühismõõdutus), tänapäeva mõistes avastati arvud, mis ei ole ratsionaalarvud. Eudoxos püüdis välja töötada ühismõõdutute suurustega opereerivat teooriat. 19. sajandi 2. poolel formuleeriti matemaatiline analüüs kõrgemal rangusastmel ning selle käigus töötasid Karl Weierstraß, Richard Dedekind, Georg Cantor, Eduard Heine ja Charles Méray välja reaalarvude range teooria.

Tänapäeva matemaatika seisukohast moodustab reaalarvude hulk pideva järjestatud korpuse. See definitsioon või sellega samaväärne aksiomaatika määratleb reaalarvud üheselt: isomorfismi täpsusega leidub ainult üks pidev järjestatud korpus.

Kõikide reaalarvude hulga tavaline tähis on (ℝ) või ka või R.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne