Matematikan, funtzio supraiektibo bat funtzio bat da, zeinak multzoko (koeremuko) elementu guztiei gutxienez multzoko (eremuko) elementu bat esleitzen zaien. Beste era batean esanda, koeremuko elementu bakoitza, funtzio beraren eremuko elementuren baten irudia da; edo -ko elementu guztiek aurreirudia dute multzoan, eta ez da zertan bakarra izan.
Supraiektibo terminoa Nicolas Bourbakik, XX. mendeko matematikari nagusiki frantsesen talde batek, erabili zuen lehenengoz, baita injektibo eta bijektibo hitzak ere. Sur hitz frantsesak gainean esan nahi du; izan ere, funtzio supraiektibo baten irudiak koeremua guztiz estaltzen du.
Edozein funtzio bihur daiteke supraiektibo, koeremua murrizten bada eremuaren irudira. Funtzio supraiektibo guztiek alderantzizkoa dute eskumatik, eta eskumatik alderanzgarria diren funtzio guztiak derrigorrez supraiektiboak dira. Gainera, bi funtzio supraiektiboen konposaketa supraiektiboa da beti, eta edozein funtzio deskonposa daiteke supraiekzio eta injekzio batean.