Matematika ezagutza-arlo bat da. Bertan sartzen diren gaien artean, zenbakiak daude, formulak eta erlazionatutako egiturak, formak eta horiek biltzen dituzten espazioak, eta kantitateak eta euren aldaketak. Gai horiek matematika modernoan irudikatzen dira, zenbakien teoriaren[1], aljebraren[2], geometriaren eta analisiaren[3][4] azpi-diziplina handiekin, hurrenez hurren. Matematikariek ez dute adostasun orokorrik beren diziplina akademikoaren definizio komun bati buruz.
Matematika-jardueraren zatirik handienean, objektu abstraktuen propietateak aurkitu behar dira, eta horiek frogatzeko arrazoimen hutsa erabili. Objektu horiek naturaren abstrakzioak dira, edo, matematika modernoetan, zenbait propietate dituzten entitateetan, axioma deritzenetan. Froga bat da arau deduktiboen aplikazioen segida bat jadanik ezarrita dauden emaitzetan. Emaitza horiek aldez aurretik frogatutako teoremak, axiomak eta, naturaren abstrakzioaren kasuan, kontuan hartutako teoriaren abiapuntutzat jotzen diren oinarrizko propietate batzuk dituzte[5].
Ezagutza-arlo funtsezkoa da natur zientzietan, ingeniaritzan, medikuntzan, finantzetan, informatikan eta gizarte-zientzietan. Nahiz eta matematika asko erabiltzen den fenomenoak modelizatzeko, matematikaren funtsezko egiak ez dira edozein esperimentazio zientifikorekiko independenteak. Matematikaren arlo batzuk, hala nola estatistika eta jokoen teoria, korrelazio estuan garatzen dira beren aplikazioekin, eta matematika aplikatuen epigrafean biltzen dira. Beste arlo batzuk edozein aplikaziotatik kanpo garatzen dira (eta horregatik esaten zaie matematika puru), baina askotan geroago aplikazio praktikoak aurkitzen dituzte[6][7]. Zenbaki osoen faktorizazioaren arazoak, adibidez, K.a. 300. urtean Euklidesen hasi zenak, ez zuen aplikazio praktikorik RSA kriptosisteman erabili aurretik, orain asko erabiltzen baita sare informatikoen segurtasunerako.
Historikoki, frogapenaren kontzeptua eta hari lotutako zorroztasun matematikoa lehen aldiz agertu ziren greziar matematikan, batez ere Euklidesen Elementuetan[8]. Hasieratik, matematika funtsean geometrian eta aritmetikan (zenbaki naturalen eta zatikien manipulazioan) banatu zen, XVI. eta XVII. mendeetara arte, aljebra eta kalkulu infinitesimala eremu berri gisa sartu zirenean. Ordutik aurrera, berrikuntza matematikoen eta aurkikuntza zientifikoen arteko elkarreraginak bi horien garapena azkar handitzea ekarri du[9]. XIX. mendearen amaieran, matematikaren sorrerako krisiak metodo axiomatikoaren sistematizaziora eraman zuen[10], zeinak iragarri baitzuen izugarri handitu zirela matematika-arloen kopurua eta haien aplikazio-eremuak. Matematika-irakasgaien egungo sailkapenak lehen mailako 60 matematika-arlo baino gehiago aipatzen ditu.