Zenbaki kardinal

Zenbakiak matematikan
Zenbaki multzoak

Zenbaki arruntak
Zenbaki osoak
Zenbaki arrazionalak
Zenbaki irrazionalak
Zenbaki errealak
Zenbaki konplexuak
Zenbaki aljebraikoak
Zenbaki transzendenteak

Konplexuen hedadurak

Koaternioiak
Oktonioiak
Zenbaki hiperkonplexuak

Bestelakoak

Zenbaki kardinalak
Zenbaki ordinalak
Zenbaki lehenak
π = 3.141592654…
e = 2.718281828…
i unitate irudikaria
infinitua
Φ = 1,6180339887...

Zenbaki-sistemak

Zenbaki-sistema hamartarra
Zenbaki-sistema bitarra
Zenbaki-sistema hamaseitarra
Zenbaki-sistema zortzitarra

Zenbaki kardinala multzo bat osatzen duten elementu kantitatea adierazten duen zenbakia da, kantitate hori finitua edo infinitua izanda. Izan bedi A multzoa. A multzoa finitua dela esango dugu A = ∅ bada edo existitzen bada n ∈ N zeinentzako A multzoa eta {1,...,n} multzoa ekipotenteak diren. Multzo hutsaren kardinala 0 dela diogu, eta bestelako kasuan, n horri A-ren kardinala esaten zaio, eta a |A| = Card(A) = n gisa adieraziko dugu.

A multzo infinitua dela diogu finitua ez bada.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne