Cauchy-jakauma

Cauchy-jakauma
Tiheysfunktio
Cauchyn jakaumien tiheysfunktioita Purppuranvärinen käyrä on standardi Cauchy-jakauma
Kertymäfunktio
Cauchy-jakauman kertymäfunktio
Parametrit lokaatio (reaaliluku)
γ > 0 skaala (reaaliluku)
Määrittelyjoukko
Tiheysfunktio
Kertymäfunktio
Odotusarvo ei ole
Mediaani
Moodi
Varianssi ei ole
Vinous ei määritelty
Huipukkuus ei määritelty
Entropia
Momentit generoiva funktio ei ole
Karakteristinen funktio

Cauchy-jakauma (Cauchyn jakauma) on Augustin Cauchyn mukaan nimetty jatkuva todennäköisyysjakauma. Varsinkin fysikaalisissa sovelluksissa sitä nimitetään myös Lorentzin jakaumaksi (Hendrik Lorentzin mukaan),[1] Cauchyn–Lorentzin jakaumaksi tai Breitin–Wignerin jakaumaksi. Yksin­kertaisinta Cauchy-jakaumaa sanotaan standardiksi Cauchy-jakaumaksi. Sen tiheysfunktio on

ja sen kertymäfunktio on arkustangenttifunktion muotoinen:

.

Kahden standardin normaalisti jakautuneen satunnaismuuttujan suhde noudattaa standardia Cauchy-jakaumaa.[2]

Cauchy-jakauma on siitä erikoinen, että sillä ei ole odotusarvoa eikä varianssia. Tämän vuoksi eräät toden­näköisyys­laskennan tärkeät tulokset kuten suurten lukujen laki ja keskeinen raja-arvolause eivät koske Cauchy-jakaumaa noudattavia satunnais­muuttujia. Koska sillä ei ole odotus­arvoa, sillä ei ole myöskään momentit generoivaa funktiota.[3]

Cauchy-jakauma on yksi harvoista vakaista jakaumista, joiden tiheysfunktio voidaan ilmaista analyyttisesti; muita sellaisia ovat normaalijakauma ja Lévyn jakauma.

  1. Earliest Known Uses of Some of the Words in Mathematics (C): Cauchy distribution jeff560.tripod.com. Viitattu 13.1.2016.
  2. Pekka Tuominen, Pekka Norlamo: ”Cauchy-jakaumat”, Todennäköisyyslaskenta, osa 2, s. 429–432. Limes ry, 1978. ISBN 951-745-023-0
  3. Viittausvirhe: Virheellinen <ref>-elementti; viitettä PT_PN2 ei löytynyt

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne