Diagonalisoituva matriisi

Lineaarialgebrassa n×n-neliömatriisia A sanotaan diagonalisoituvaksi jos se on similaarinen jonkin diagonaalimatriisin D kanssa, eli on olemassa kääntyvä matriisi P siten, että

.

Vastaavasti jos V on äärellisulotteinen vektoriavaruus, lineaarioperaattoria T : V → V sanotaan diagonalisoituvaksi, jos on olemassa V:n kanta, missä T on diagonaalimatriisi[1]. Diagonalisoituvat matriisit ja -kuvaukset ovat käyttökelpoisia, sillä niitä on helppo käsitellä: niiden ominaisarvot ja ominaisvektorit on helppo laskea ja diagonalisen matriisin potenssi saadaan korottamalla lävistäjäalkiot annettuun potenssiin. Diagonalisointi on prosessi, jossa diagonaalimatriisi tai -lineaarikuvaus etsitään.

  1. Thompson, Jan (toim.): Matematiikan käsikirja, s. 65. Kustannusosakeyhtiö Tammi ja Suomen Teknologiatieto Oy, 1991.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne