Esimerkkinä kahden muuttujan funktion gradientti ilmaistuna vektorikenttänä. Väri kuvaa funktion arvoa (isot punaisella, pienet sinisellä) ja vektorit gradienttia kussakin pisteessä.
Gradientti on matemaattinen differentiaalioperaattori, joka on määritelty usean muuttujan skalaarifunktioille. Gradientti ilmaisee funktion suurimman muutosnopeuden (gradienttivektorin pituus) ja tämän suurimman muutoksen suunnan. Funktio kasvaa voimakkaimmin gradientin suuntaan ja vähenee voimakkaimmin negatiivisen gradientin suuntaan.[1]
missä ja -komponenttien kertoimet ovat funktion osittaisderivaattoja muuttujien ja suhteen. Yleisen muuttujan funktion gradientti määritellään
,
missä on funktion muuttujien muodostama vektori
.
Gradienttia voidaan pitää derivaatan yleistyksenä usean muuttujan funktioille. Gradientti on erikoistapaus Jacobin matriisista, joka on määritelty monen muuttujan vektoriarvoisille funktioille .
↑Adams, Robert A.: ”12.7 Gradients and Directional Derivatives”, Calculus: A Complete Course, s. 680. Pearson: Addison Wesley, 6. painos.