Ristitulo eli vektoritulo on kolmiulotteisessa euklidisessa avaruudessa määritelty kahden vektorin välinen laskutoimitus, jonka merkkinä käytetään vinoristiä ×. Jos a ja b ovat kaksi erisuuntaista vektoria, niiden ristitulo a × b on vektori, joka on molempia vastaan kohtisuorassa ja näin ollen kohtisuorassa niiden määrittämään tasoon nähden. Ristitulolla on monia sovelluksia matematiikassa, fysiikassa, tekniikassa ja tietokoneohjelmoinnissa. Se on erotettava vektorien pistetulosta eli skalaaritulosta.
Jos vektorit ovat saman- tai vastakkaissuuntaisia, toisin sanoen ne eivät ole lineaarisesti riippumattomia, tai jompikumpi niistä on nollavektori, ristitulo on nollavektori. Muussa tapauksessa vektorien ristitulo on itseisarvoltaan (eli pituudeltaan) yhtä suuri kuin sen suunnikkaan pinta-ala, jonka sivuina nämä vektorit ovat; erityisesti toistensa nähden kohtisuorien vektorien ristitulo on niiden pituuksien tulo. Ristitulo on antikommutatiivinen, toisin sanoen a × b = -b × a), ja se noudattaa osittelulakia vektorien yhteenlaskun suhteen, toisin sanoen a × (b + c) = a × b + a × c). Avaruus varustettuna ristitulolla on algebra reaalilukujen kunnan yli. Se ei ole vaihdannainen eikä liitännäinen, mutta se on Lien algebra.
Pistetulon tavoin ristitulo riippuu euklidisen avaruuden metriikasta, mutta toisin kuin pistetulo, se riippuu myös avaruuden orientaatiosta eli kätisyydestä. Ristitulon käsitettä voidaan yleistää monin tavoin; se voidaan tehdä kätisyydestä riippumattomaksi tulkitsemalla tulos pseudovektoriksi, tai kuinka monessa ulottuvuudessa tahansa voidaan vektorien ulkoista tuloa käyttää niin, että tuloksena on bivektori tai 2-muoto. Käyttämällä orientaatiota ja metristä struktuuria aivan samoin kuin tavanomaisessa kolmiulotteisessa ristitulossa voidaan n ulottuvuudessa muodostaa n - 1 vektorin tulo niin, että se on kohtisuorassa niitä kaikkia vastaan. Kuitenkin vain kolmessa tai seitsemässä ulottuvuudessa [1] voidaan kahden vektorin ei-triviaali tulo määritellä niin, että tuloksena on vektori. Niistäkin vain kolmiulotteisessa avaruudessa ristitulo on yksikäsitteinen.