L'algorithme de la potence est un algorithme pour extraire la racine n-ième d'un nombre réel. Il doit son nom[1] à la disposition des calculs qui ressemble à celle de la division. En effet, comme ce dernier, il procède en décalant n chiffres du radicande à partir du chiffre le plus significatif et retourne un chiffre à chaque itération.
Cet algorithme, très ancien, apparaît dès l'introduction de la notation décimale des nombres par position[réf. nécessaire]. On en trouve mention pour la racine carrée et la racine cubique dans un ouvrage du mathématicien indien Aryabhata, vers 499 apr. J.-C.[2] Il a été utilisé pour le calcul des racines carrées jusqu'au milieu du XXe siècle.