Au point M de la courbe rouge, le cercle osculateur (en pointillés) approche mieux la courbe qu'un cercle tangent quelconque (passant par N). Son centre O et son rayon R sont le centre de courbure et le rayon de courbure de la courbe en M.
En géométrie différentielle, le cercle osculateur ou cercle de courbure en un point d'une courbe est un objet permettant la description locale de cette courbe. Parmi les cercles passant par ce point, c'est celui qui « épouse cette courbe le mieux possible », donc mieux qu'un cercle tangent quelconque, d'où le nom de cercle osculateur (littéralement, « qui donne un baiser »)[1],[2].
Le centre de ce cercle est appelé centre de courbure de la courbe au point M et son rayon, le rayon de courbure.
↑Le terme apparaît chez Leibniz, Meditatio nova de natura anguli contactus et osculi, Acta Eruditorum, Juin 1686, in Gerhardt, Mathematische Schriften, tome VII, p. 326-329, où Leibniz distingue les cercles touchant une courbe donnée (circulo curvam propositam tangente) du cercle baisant (osculante) celle-ci. Voir aussi Marc Parmentier, Leibniz, naissance du calcul différentiel, Paris, Vrin, (1989), pp. 122-125, pour une traduction plus moderne.