En géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
Ces courbes apparaissent aussi comme les courbes planes définies par une équation de degré 2, dit autrement les lignes de niveau de fonctions quadratiques.
En dehors du cercle, chaque conique non dégénérée admet un axe de symétrie principal, sur lequel un point appelé foyer permet d’identifier la courbe comme le lieu géométrique des points satisfaisant une équation monofocale.
L’ellipse et l’hyperbole admettent aussi un axe de symétrie secondaire perpendiculaire à l’axe principal, définissant ainsi un deuxième foyer et permettant de redéfinir la conique par une équation bifocale.
Les intersections de cône par un plan pouvant être vues comme des projections coniques d'un cercle sur un plan, l'étude des coniques en géométrie projective permet d'obtenir des résultats puissants et donne lieu à l'étude des coniques projectives.
Les coniques sont d'un intérêt particulier en astronautique et en mécanique céleste, car elles décrivent la forme des orbites d'un système à deux corps sous l'effet de la gravitation.