Dual d'un espace vectoriel topologique

En mathématiques, en vue d'un certain nombre d'applications (théorie des distributions[1], des hyperfonctions, et leur utilisation notamment pour l'étude des équations aux dérivées partielles[2],[3],[4]), il est nécessaire de développer et d'étudier la notion de dual d'un espace vectoriel topologique, plus générale que celle de dual d'un espace vectoriel normé. Néanmoins, la théorie de la dualité n'est fructueuse et utile que dans le cadre des espaces localement convexes, dont la théorie a été fondée par Andreï Kolmogorov[5] et John von Neumann en 1935[6]. La théorie de la dualité dans ces espaces s'est développée dans les années suivantes, avec les contributions importantes de Gottfried Köthe (sur les espaces de suites)[7], de Jean Dieudonné[8] et de George Mackey[9],[10] ; puis l'article cosigné par Jean Dieudonné et Laurent Schwartz[11], sa généralisation par Nicolas Bourbaki[12], les travaux d'Alexandre Grothendieck[13],[14],[15],[16], enfin la parution entre 1953 et 1955 de la première édition du Livre des Éléments de mathématique de N. Bourbaki consacré aux espaces vectoriels topologiques[17], en ont marqué la maturité[18],[19]. Une première approche consiste à considérer deux espaces vectoriels E et F (sans topologie a priori) et à les mettre en dualité au moyen d'une forme bilinéaire, si possible non dégénérée. Une autre approche consiste à partir d'un espace localement convexe E, puis considérer son dual topologique  ; dans ce cas, E et sont naturellement mis en dualité au moyen de la « forme bilinéaire canonique ». Tous les résultats obtenus dans la première approche sont valides dans la seconde ; suivant la nature de l'espace localement convexe E, on peut obtenir certaines propriétés supplémentaires[20].

  1. Schwartz 1966
  2. Hörmander 1963
  3. Palamodov 1970
  4. Komatsu 1973
  5. Kolmogorov 1935
  6. von Neumann 1935
  7. Ces contributions, tout d'abord effectuées en collaboration avec Otto Toeplitz, dont Köthe était l'élève, s'échelonnent entre 1934 et 1956 (voir notamment la bibliographie de Köthe 1969).
  8. Dieudonné 1942
  9. Mackey 1945
  10. Mackey 1946
  11. Dieudonné et Schwartz 1949
  12. Bourbaki 1950
  13. Grothendieck 1950
  14. Grothendieck 1952
  15. Grothendieck 1954
  16. Grothendieck 1958
  17. Bourbaki 2006
  18. Il y a eu néanmoins depuis 1955 d'innombrables contributions à la théorie des espaces vectoriels topologiques, notamment la théorie de la dualité entre espaces localement convexes et espaces vectoriels bornologiques (Houzel 1972) dont l'influence est du reste sensible au §III.3, n°1 ("Bornologies") de Bourbaki 2006 dans la dernière édition de 1981 : la notion de bornologie, qui s'est développée vers les années 1970, était bien entendu absente des premières éditions de ce livre.
  19. Ferrier 2011.
  20. La présentation qui suit reprend essentiellement (avec quelques simplifications : on s'intéresse surtout aux espaces localement convexes séparés) et de très rares démonstrations celle de Bourbaki 2006, complétée par quelques éléments de Köthe 1969 et Schaefer et Wolff 1999.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne